Chem. Ber. 107, 1380-1388 (1974)

Reaktionen an trans-Difulminatobis(triphenylphosphin)platin(II) 1)

Wolfgang Beck*, Karl Schorpp und Claus Oetker

Institut für Anorganische Chemie der Universität München, D-8000 München 2, Meiserstraße 1

Eingegangen am 19. Dezember 1973

Das thermisch sehr stabile $(Ph_3P)_2Pt(CNO)_2$ (1) läßt sich katalytisch in Gegenwart von organischen Carbonylverbindungen unter milden Bedingungen zur Isocyanatoverbindung $(Ph_3P)_2Pt(NCO)_2$ isomerisieren. 1 liefert mit organischen Thiocarbonylverbindungen $(Ph_3P)_2Pt(NCS)_2$. Mit Phosphinen wird 1 zur entsprechenden Cyanoverbindung trans- $(Ph_3P)_2Pt(CN)_2$ reduziert. Über die gefahrlose Darstellung verschiedener gemischter Fulminatokomplexe $(R_3E)_2M(CNO)_2$ (M=Pd,Pt;E=P,As,Sb), $(Ph_3P)_2Pt(X)CNO$ (X=H,Me,CN,NCO) und $(Ph_3P)_2Rh(CO)CNO$ unter Verwendung von $[AsPh_4]CNO$ wird berichtet.

Reactions of trans-Difulminatobis(triphenylphosphine)platinum(II) 1)

The thermally very stable fulminato complex $(Ph_3P)_2Pt(CNO)_2$ (1) rearranges under mild conditions to the isomeric isocyanato complex $(Ph_3P)_2Pt(NCO)_2$ in the presence of organic carbonyl compounds which act as catalysts. $(Ph_3P)_2Pt(NCS)_2$ is obtained from 1 and organic thiocarbonyl compounds. 1 is reduced by phosphines to the corresponding cyanide *trans*- $(Ph_3P)_2Pt(CN)_2$. The safe preparation of a number of fulminato complexes $(R_3E)_2M(CNO)_2$ $(M = Pd, Pt; E = P, As, Sb), (Ph_3P)_2Pt(X)CNO (X = H, Me, CN, NCO), and <math>(Ph_3P)_2Ph(CO)CNO$ by use of [AsPh_4]CNO is reported.

Im Vergleich zu den bisher bekannten Fulminatokomplexen²⁾ ist 1 wegen der einfachen und gefahrlosen Darstellung aus Pt(PPh₃)₄ und Nitromethan¹⁾ und aufgrund seiner ungewöhnlich großen thermischen Stabilität zum Studium der Chemie des koordinierten Fulminatoliganden besonders geeignet.

1. Isomerisierung Fulminat → Isocyanat

Organische Nitriloxide mit sterisch gehinderter CNO-Gruppe³⁾ sowie eine Reihe von Metallfulminaten²⁾ isomerisieren thermisch oder photochemisch zu den thermodynamisch stabileren Isocyanaten. Für die Umwandlung des Fulminat- in das Cyanat-Ion weist eine INDO-Rechnung auf die intermediäre Bildung eines Oxazirinyl-Ringes hin⁴⁾. Mit der ebenfalls intramolekular verlaufenden Umlagerung organischer Nitriloxide⁵⁾ in Isocyanate konkurriert die Dimerisierung zu 1,2,5-Oxadiazolen³⁾. Mit Fulminatokomplexen konnte eine solche Dimerisierung bisher nicht beobachtet werden.

XLV. Mitteil. über Pseudohalogeno-Metallverbindungen; XLIV. Mitteil.: K. Schorpp und W. Beck, Chem. Ber. 107, 1371 (1974), vorstehend.

²⁾ Zusammenfassende Darstellung: W. Beck, Organomet. Chem. Rev. A 7, 159 (1971).

³⁾ Ch. Grundmann und P. Grünanger, The Isonitrile Oxides, Springer Verlag, Berlin-Heidelberg-New York 1971.

⁴⁾ F. Holsboer und W. Beck, Chem. Commun. 1970, 263.

⁵⁾ Ch. Grundmann und P. Kochs, Angew. Chem. 82, 637 (1970); Angew. Chem., Int. Ed. Engl. 9, 635 (1970).

a) Thermische Isomerisierung

In Nujol-Suspension verläuft die Umwandlung von 1 zum cis-Isocyanatokomplex 2 erst oberhalb 200°C mit merklicher Geschwindigkeit. Im IR-Spektrum tritt zunächst eine v_{as} NCO-Bande bei 2260 cm⁻¹ auf, die dem trans-Komplex (Ph₃P)₂Pt(CNO)(NCO) zugeordnet wird. Im Verlauf der Isomerisierung verschiebt sich das Maximum der Isocyanat-Bande auf den Wert der v_{as} NCO-Absorption von cis-(Ph₃P)₂Pt(NCO)₂ bei 2238 cm⁻¹.

Die Formulierung der Zwischenstufe (Ph₃P)₂Pt(CNO)(NCO) als *trans*-Isomeres wird gestützt durch Vergleich mit dem analogen Cyanokomplex (Ph₃P)₂Pt(CN)(NCO)⁶), der nach dem ³¹P-NMR-Spektrum ausschließlich in der *trans*-Form vorliegt. Die v_{as} NCO-Bande dieses Cyanokomplexes ist ebenfalls um ca. 20 cm⁻¹ gegenüber 2 nach größeren Wellenzahlen verschoben. Bestimmend für die Konfiguration ist in beiden Fällen der starke *trans*-Effekt des Cyano- und Fulminatoliganden ²). Die Geschwindigkeitskonstanten k_1 und k_2 liegen in der gleichen Größenordnung, da für $k_1 \ll k_2$ sich die Zwischenstufe nicht meßbar anreichern könnte; für $k_1 \gg k_2$ müßte der gemischte *trans*-Komplex ohne größeren Anteil an 2 isolierbar sein.

b) Katalytische Isomerisierung in Gegenwart von organischen Carbonylverbindungen

Die thermisch erst oberhalb 200°C verlaufende Isomerisierung von 1 zu 2 erfolgt in Gegenwart von Carbonylverbindungen wie Aceton, Benzophenon, Benzaldehyd, Chloralhydrat oder Brenztraubensäure-äthylester unter wesentlich milderen Bedingungen:

1
$$\xrightarrow{RR'C=0}$$
 $\xrightarrow{-Pt-C}$ $\xrightarrow{-RR'C=0}$ $\xrightarrow{-Pt-C}$ $\xrightarrow{-Pt-N}$ $\xrightarrow{-Pt-N}$ $= C=0$

Diese katalytische Isomerisierung läßt sich zwanglos über eine 2+3-Cycloaddition⁷⁾ der Carbonylgruppe an den Fulminatoliganden zum Dioxazol-Fünfring erklären. Der Ring zerfällt unter Rückbildung der Carbonylverbindung zum stabilen Isocyanatokomplex 2. Auch bei dieser Reaktion kann mit Hilfe des IR-Spektrums intermediär der gemischte Komplex (Ph₃P)₂Pt(CNO)(NCO) nachgewiesen werden.

2. Reaktion mit organischen Thiocarbonylverbindungen

Die Bildung von Isothiocyanatokomplexen bei der Umsetzung von 1 mit CS₂ oder Thiobenzophenon kann ebenfalls auf eine 2+3-Cycloaddition⁷⁾ zurückgeführt werden. 1 liefert mit CS₂ cis-(Ph₃P)₂Pt(NCS)₂; mit Thiobenzophenon entsteht ein

⁶⁾ W. Beck und K. Schorpp, unveröffentlicht.

R. Huisgen, Angew. Chem. 75, 604, und zwar S. 612 (1963); Angew. Chem., Int. Ed. Engl. 2, 565 (1963).

Gemisch aus (Ph₃P)₂Pt(NCS)₂ und 2, da sich während der Reaktion Benzophenon bildet, das seinerseits 1 in 2 überführt.

$$1 \xrightarrow{+ \times C = S} -P_{t}^{\downarrow} - C \xrightarrow{- \times C = O} -P_{t}^{\downarrow} - C \xrightarrow{S} -P_{t}^{\downarrow} - N = C = S$$

Der Fulminatoligand verhält sich somit in 1 gegenüber Carbonyl- und Thioverbindungen wie die —CNO-Gruppe in organischen Nitriloxiden, die nach *Huisgen* mit Aldehyden, Ketonen und Thioketonen 1,2,4-Dioxazole bzw. 1,4,2-Oxathiazole bilden^{3,8}). Allerdings sind offensichtlich die 3-metallierten Fünfringheterocyclen wesentlich instabiler als die organischen Derivate, die erst bei höherer Temperatur in Iso(thio)cyanate und Carbonylverbindungen zerfallen. Im Gegensatz zu organischen Nitriloxiden, die mit Nitrilen, Olefinen und Acetylenen zahlreiche 1,3-dipolare Cycloadditionsreaktionen eingehen³), konnten mit 1 sowie (Ph₃P)₂Pd(CNO)₂ keine solchen Umsetzungen beobachtet werden⁹).

3. Versuche zur Stabilisierung von "Knallsäureäther" oder Isoknallsäure am Platin

Bei Versuchen, die bisher unbekannten "Knallsäureäther" C = N - OR oder die Isoknallsäure C = N - OH am Metall zu stabilisieren, wurde Isomerisierung von 1 in 2 festgestellt:

$$1 \xrightarrow{+R^+X^-} \left[-P_1^{\dagger} - C = N \atop OR \right]^+ \xrightarrow{-R^+} 2$$

$$(R^+X^-: CH_2CO_2H; Ät_3OBF_4)$$

Auch die lange bekannten Reaktionen von Silber- oder Quecksilberfulminat mit Alkyl- oder Acylhalogeniden führten mit Ausnahme von Ph₃CCl zu Isocyanatoverbindungen³⁾.

Dagegen erfolgt bei der Umsetzung von 1 mit Protonensäuren HX (X = CI, CF_3CO_2 , PhS), deren Anionen stabile Komplexe der Form ($Ph_3P_2PtX_2$ bilden können, Substitution von CNO durch X; d.h. nur Säuren, deren Anionen zur Koordination an das Platin nicht geeignet sind, katalysieren die Umlagerung CNO \rightarrow NCO durch Schwächung der Pt-C-Bindung bei der Protonierung.

4. Reduktion mit Phosphinen zu Cyanokomplexen

Die Reduktion von koordiniertem Fulminat zu Cyanid wurde bereits mehrfach beobachtet²⁾. Organische Nitriloxide lassen sich besonders leicht durch Phosphine in die entsprechenden Nitrile überführen³⁾. Ebenso gelingt auch die Reduktion von 1 unter relativ milden Bedingungen:

1 + PR₃
$$\xrightarrow{\text{-OPR}_3}$$
 $trans - (\text{Ph}_3\text{P})_2\text{Pt}(\text{CN})(\text{CNO}) \xrightarrow{\text{+PR}_3}$ $trans - (\text{Ph}_3\text{P})_2\text{Pt}(\text{CN})_2$

(R = Ph, OÄt)

⁸⁾ R. Huisgen und W. Mack, Tetrahedron Lett. 1961, 581; R. Huisgen, W. Mack und E. Aneser, Angew. Chem. 73, 656 (1961).

⁹⁾ Die Umsetzung von 1 mit Benzonitril führte zu einem Benzonitril-cyano-Komplex, vermutlich nach: 1 + 2 PhCN → (PhCN)₂Pt(CN)₂ + 2 Ph₃PO.

Dabei wirkt Triäthylphosphit — entsprechend der Abstufung der Redoxpotentiale — wesentlich stärker reduzierend als Triphenylphosphin und reagiert bereits bei 30°C.

Der zweistufige Reaktionsverlauf kann bei der Reaktion von (Me₂PhP)₂Pt(CNO)₂ mit Me₂PhP IR-spektroskopisch bequem verfolgt werden. Zunächst tritt eine scharfe vCN-Absorption bei 2136 cm⁻¹ auf, deren Intensität während der Reaktion ein Maximum durchläuft und dann wieder abnimmt. Gleichzeitig erscheint eine zweite Cyanidschwingung bei 2127 cm⁻¹, deren Intensität während der Reaktion monoton ansteigt. Im Reaktionsprodukt *trans*-(Me₂PhP)₂Pt(CN)₂ findet man eine symmetrische Bande bei 2127 cm⁻¹, d.h. die Schwingung bei 2136 cm⁻¹ ist der vCN des gemischten Komplexes (Me₂PhP)₂Pt(CN)(CNO) zuzuschreiben.

Die Umsetzung von 1 mit dem zweizähnigen Phosphin $Ph_2PCH_2CH_2PPh_2$ erfolgt unter Reduktion CNO \rightarrow CN und Substitution von PPh_3 :

Im IR-Spektrum von 3 ist, wie für cis-Komplexe zu erwarten 10), die vCN-Bande aufgespalten.

5. Substitution von CNO durch CN; Darstellung von Tetraphenylarsoniumfulminat aus 1

Durch den stärkeren Cyanoliganden kann Fulminat in 1 aus dem Komplex verdrängt werden. Bei Verwendung von Tetraphenylarsoniumcyanid ist die Reaktion in Chloroform in homogener Phase möglich. Voraussetzung für das Gelingen der Substitution ist die sorgfältige Vermeidung von Säurespuren im Lösungsmittel (sonst Bildung von Isocyanat). Kleine Mengen von [AsPh4]CNO, das im Gegensatz zu den extrem stoß- und temperaturempfindlichen Alkalifulminaten sehr stabil ist, können auf diesem zwar etwas umständlichen Weg gefahrlos dargestellt werden.

6. Darstellung einiger Fulminatokomplexe mit [AsPh4]CNO

Die Anwendung großvolumiger Kationen, die sich bei der Darstellung der komplexen Azide¹¹⁾ bewährte, führt auch bei Fulminatokomplexen zu berührungsstabilen, thermisch recht beständigen Verbindungen¹²⁾. Aufgrund der "Verdünnung" werden durch Einbau von voluminösen Neutralliganden wie Triphenylphosphin stabile Komplexe erhalten.

Phosphinhaltige Fulminatokomplexe von Ni¹¹, Pd¹¹, Pt¹¹ wurden früher durch Umsetzung der anionischen Komplexe [M(CNO)₄]²⁻ (aus NaCNO) und Phosphin erhalten¹⁰). Diese Methode ist jedoch mit zwei wesentlichen Nachteilen behaftet:

1. Alkalifulminate sind nur über Quecksilberfulminat zugänglich und ihre Darstellung und Handhabung erfordern besondere Vorsicht.

¹⁰⁾ W. Beck und E. Schuierer, Chem. Ber. 98, 298 (1965).

¹¹⁾ W. Beck, W. P. Fehlhammer, P. Pöllmann, E. Schuierer und K. Feldl, Chem. Ber. 100, 2335 (1967).

¹²⁾ W. Beck, P. Swoboda, K. Feldl und E. Schuierer, Chem. Ber. 103, 3591 (1970).

2. Parallel zur Substitution von CNO⁻ durch Phosphin kann auch Reduktion des komplexgebundenen Fulminats zum Cyanid erfolgen. Beide Nachteile können umgangen werden durch Umsetzung der gemischten Halogeno-phosphin-Komplexe mit Tetraphenylarsoniumfulminat.

Der Austausch von Halogenid durch CNO^- in cis-Dihalogenobis(phosphin)platin-Komplexen und die cis-trans-Umlagerung erfolgen rasch und quantitativ. Ein geringer Überschuß von [Ph₄As]CNO stört nicht, da koordiniertes Phosphin nicht durch Fulminat substituiert wird. Das gebildete [Ph₄As]Cl kann durch Auswaschen mit Wasser bequem entfernt werden. Die Metathesisreaktion wurde angewandt auf einige phosphin-, arsin- und stibinhaltige Komplexe des Platins und Palladiums, auf gemischte Triphenylphosphinplatin-Komplexe (Ph₃P)₂PtXY (X = H, CH₃, CN, NCO; Y = Cl, Br, J) sowie auf (Ph₃P)₂Rh(CO)Cl. Die erhaltenen Verbindungen, für die stets trans-Struktur anzunehmen ist, sind in Tab. 1 aufgeführt.

Schwingungsspektren

Die Schwingungsspektren von Fulminatokomplexen sind außerordentlich charakteristisch ²⁾. Aufgrund der $2\nu_s$, ν_{as} und ν_s CNO-Schwingungen können die Verbindungen leicht identifiziert werden. Folgende Gesetzmäßigkeiten lassen sich erkennen:

- 1. In der Richtung Pt > Pd (> Ni) nehmen die Frequenzen ν_{as} und ν_{s} CNO bei analogen Verbindungen (ebenso wie bei entsprechenden homogenen Fulminato-komplexen ²⁾) ab; d. h., der σ -Bindungsanteil steigt bei den edleren Metallen (σ -Bindung: gefülltes 2s2p-Orbital des CNO-Kohlenstoffs \rightarrow leeres 5d6s6p²-Orbital des Platins). Parallel zum ansteigenden kovalenten Bindungscharakter werden die Komplexe auch thermisch stabiler.
- 2. Mit zunehmender Basizität, d.h. mit abnehmender π -Akzeptorfähigkeit der beiden zum CNO cis-ständigen Phosphinliganden sinken die Frequenzen v_{as} und v_s CNO bei trans-Difulminatobis(phosphin)palladium- und -platin-Komplexen monoton ab. Dieser cis-Effekt kann durch eine Zunahme der π -Rückbindung aus gefüllten d-Orbitalen des Metalls in antibindende π -Orbitale des Fulminats erklärt werden. Bei cis-Diazidobis(phosphin)platin(II)-Komplexen wurde ein entgegengesetzter Trend beobachtet: Zunahme von v_{as} und v_sN_3 in Richtung PPh₃ \rightarrow PBuPh₂ \rightarrow PBu₂Ph \rightarrow PBu₃, wofür eine steigende π -Donorwirkung in der entgegengesetzten Richtung verantwortlich gemacht wird (CNO = π -Akzeptor, N_3 = schwacher π -Akzeptor, stärkerer π -Donor) 13).
- 3. Bei gemischten Komplexen $(Ph_3P)_2PtX(CNO)$ ist mit X=CN und NCO $v_{as}CNO$ gegenüber dem analogen Difulminatokomplex nicht verschoben. Dagegen erscheint für X=H, CH_3 $v_{as}CNO$ bei wesentlich kleineren Wellenzahlen. Die starken σ -Donoren H und CH_3 führen zu einer erhöhten Metall \rightarrow CNO- π -Rückbindung. Im Hydridokomplex ist eine zusätzliche Verschiebung durch Kopplung von $v_{as}CNO$ mit vPt-H anzunehmen.

¹³⁾ R. Schlodder, S. Vogler und W. Beck, Z. Naturforsch. 27B, 463 (1972); W. Beck, P. Kreutzer und K. Schorpp, unveröffentlicht.

- ' ' ' '			-
	2 ν _s CNO	ν _{as} CNO	ν _s CNO
(Ph ₃ P) ₂ Pt(CNO) ₂	2325	2189	1153
(BuPh ₂ P) ₂ Pt(CNO) ₂	2317	2185	1146
(Bu2PhP)2Pt(CNO)2	2313	2183	1142
(Bu3P)2Pt(CNO)2	2310	2177	1137
$(RP)_2Pt(CNO)_2a)$		2173	1123
(Ph ₃ P) ₂ Pd(CNO) ₂	2317	2172	1155
(BuPh ₂ P) ₂ Pd(CNO) ₂	2313	2170	1151
(Bu ₂ PhP) ₂ Pd(CNO) ₂	2310	2166	1146
(Bu3P)2Pd(CNO)2	2305	2164	1142
(Ph ₃ As) ₂ Pt(CNO) ₂		2181	1121
(Ph ₃ Sb) ₂ Pt(CNO) ₂		2180.5	1118
(Ph ₃ As) ₂ Pd(CNO) ₂		2166	1122
(Ph ₃ Sb) ₂ Pd(CNO) ₂		2166	_
(Ph ₃ P) ₂ Pt(H)CNO		2129	1129
(Ph ₃ P) ₂ Pt(CH ₃)CNO		2162	1153
(Ph ₃ P) ₂ Pt(CN)CNO		2188	1153
(Ph ₃ P) ₂ Pt(NCO)CNO		2189	1153
[Ph(CH ₃) ₂ P] ₂ Pt(CNO) ₂	2315	2183	1143
[Ph(CH ₃) ₂ P] ₂ Pt(CN)CNO		2183	
(Ph ₃ P) ₂ Rh(CO)CNO	2283	2147	
· -			

Tab. 1. IR-Spektren von Fulminatokomplexen trans- $L_2M(CNO)X$ (cm⁻¹) (X = CNO, CN, NCO, H, CH₃, CO) (in Chloroform)

Die δCNO-Schwingungen aller vermessenen Verbindungen liegen bei 475 und 463 cm⁻¹.

Wir danken Herrn Dipl.-Chem. K. Blank für eine Probe dieses Phosphins.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir herzlich für die gewährte Unterstützung.

Experimenteller Teil

1) Umlagerung Fulminat → Isocyanat

Thermische Umlagerung

- a) 100 mg (0.1 mmol) trans-Difulminatobis(triphenylphosphin)platin(II)·CHCl₃ (1) werden in 10 ml absol., säurefreiem (!) Chloroform unter Ausschluß von Licht 14 Tage auf 60°C erhitzt. Der Komplex wird nach Abziehen des Lösungsmittels unverändert zurückgewonnen.
- b) Jeweils 10 mg (0.01 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden in 0.1 ml Nujol suspendiert und unter N₂ in Mikroampullen eingeschmolzen. Nach Eintauchen in ein thermostatisierbares Siliconölbad und anschließendem Abschrecken mit kaltem Wasser wird die thermische Umlagerung CNO \rightarrow NCO (2) IR-spektroskopisch verfolgt. Erst oberhalb 200°C verläuft die Reaktion mit merklicher Geschwindigkeit (v_{as} NCO bei 2260 cm⁻¹).

Katalytische Isomerisierung CNO -> NCO mit organischen Carbonylverbindungen

a) Reaktion mit Benzophenon: 180 mg (0.2 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden in 15 ml säurefreiem Chloroform mit 80 mg (0.4 mmol) Benzophenon p.a. über Nacht auf

40°C erwärmt. Die Lösung wird i.Vak. eingeengt und der trockene Rückstand zur Entfernung des Benzophenons mit mehreren Anteilen Äther gewaschen: cis-(Ph₃P)₂Pt(NCO)₂ (2), Ausb. quantitativ. – IR (CHCl₃): ν_{as}NCO 2238 cm⁻¹.

Ebenso entsteht der Isocyanatokomplex aus 1 in Gegenwart von Chloralhydrat, Biacetyl, Brenztraubensäure-äthylester oder Benzaldehyd in CHCl₃ (60°C).

- b) Reaktion mit Aceton: 180 mg (0.2 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden in 15 ml Aceton suspendiert und in eine Druckampulle (max. Druckbelastbarkeit 20-30 atü) eingeschmolzen. Die Ampulle wird mit einem Stahlmantel gesichert und 100 h auf 90-100°C erwärmt. Innerhalb einiger Stunden löst sich der Komplex quantitativ im überhitzten Lösungsmittel. Beim Abkühlen auf Raumtemp. kristallisieren langsam große glänzende Schuppen von (Ph₃P)₂Pt(NCO)₂·(CH₃)₂CO aus. Das Aceton kann durch mehrtägiges Trocknen i. Hochvak. bei 100°C entfernt werden. Ausb. 150 mg (90%).
 - 2) Reaktion mit organischen Thiocarbonylverbindungen
- a) Reaktion mit Schwefelkohlenstoff: cis-Dithiocyanatobis(triphenylphosphin)platin(II): 180 mg (0.2 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden in 5 ml (durch Behandeln mit Quecksilber von gelöstem S₈ befreitem) frisch dest. CS₂ 2 Tage unter N₂ bei Lichtausschluß unter Rückfluß gekocht. Das Lösungsmittel wird anschließend abdestilliert und der leicht gelbliche Rückstand aus Chloroform unter Zusatz von etwas Triphenylphosphin umkristallisiert. Ausb. 120 mg (70%) (Ph₃P)₂Pt(NCS)₂. IR (KBr): v_{as}NCS 2110 cm⁻¹.
- b) Reaktion mit Thiobenzophenon: 100 mg (0.1 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden in 10 ml absol. (äthanol- und säurefreiem) Chloroform unter sorgfältigem Ausschluß von Luftfeuchtigkeit (N₂-Atmosphäre) mit 50 mg (0.25 mmol) Thiobenzophenon versetzt. Nach 15 h bei 30°C ist die anfangs tiefblaue Lösung durchsichtig grünlichblau geworden. Das Chloroform wird bis auf etwa 1 ml i.Vak. abgezogen; mit Äther/Petroläther fallen farblose Kristalle aus, Ausb. 80 mg (80%) (Ph₃P)₂Pt(NCS)₂. 1R (KBr): v_{as}NCS 2110, v_{as}NCO 2238 cm⁻¹.
 - 3) Reduktion Fulminat → Cyanid mit Phosphinen: Dicyanobis(phosphin)platin(II)-Komplexe
- a) Reduktion mit Triphenylphosphin: trans-Dicyanobis(triphenylphosphin)platin(11): 100 mg (0.1 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden in 10 ml Chloroform mit 100 mg (0.4 mmol) Triphenylphosphin 3 h auf 60°C erhitzt. Nach Abziehen des Lösungsmittels und Waschen mit Äther erhält man quantitat. farblose Kristalle von trans-(Ph₃P)₂Pt(CN)₂·CHCl₃. IR (KBr): vCN 2132 cm⁻¹.
- b) Reduktion mit Triäthylphosphit: trans-Dicyanobis(triphenylphosphin)platin(11): 200 mg (0.2 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden in 10 ml Chloroform mit 70 mg (0.4 mmol) Triäthylphosphit unter N₂ 3 h auf 30°C erwärmt. Aufarbeiten wie oben. Umkristallisieren aus CHCl₃/Äther unter Zusatz von etwas Triphenylphosphin. Ausb. 150 mg (80%).

(Ph₃P)₂Pt(CN)₂ (771.7) Ber. C 59.14 H 3.92 N 3.63 Gef. C 58.23 H 4.12 N 3.46

c) Reduktion mit 1,2-Bis(diphenylphosphino)äthan: cis-[1,2-Bis(diphenylphosphino)äthan]-dicyanoplatin(11) (3): 100 mg (0.1 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden unter N₂ mit 80 mg (0.2 mmol) Ph₂PCH₂CH₂PPh₂ in 5 ml Chloroform 2 h erwärmt. Anschließend wird das Chloroform abdestilliert und der farblose Rückstand zur Entfernung der Phosphinoxide mit Äther ausgewaschen. Farblose Kristalle, die bei 100°C i. Hochvak. getrocknet werden. Ausb. 50 mg (70%).

(Ph₂PCH₂CH₂PPh₂)Pt(CN)₂ (645.6) Ber. C 52.10 H 3.75 N 4.34 Gef. C 51.84 H 4.01 N 4.16

d) Reduktion von trans-Difulminatobis(dimethylphenylphosphin)platin(II) mit Dimethylphenylphosphin: trans-Dicyanobis(dimethylphenylphosphin)platin(II): Eine Lösung von

50 mg (0.1 mmol) trans-[Ph(CH₃)₂P]₂PtBr₂ und 80 mg Ph₄AsCNO in CHCl₃ wird unter strengem Sauerstoffausschluß mit 30 mg (CH₃)₂PPh versetzt und die Reaktion in einer Lösungsmittelküvette IR-spektroskopisch verfolgt; innerhalb von 45 min ist die Reaktion zu mehr als 90% abgelaufen. Der gemischte Cyano-fulminato-Komplex ist spektroskopisch nachweisbar. trans-[Ph(CH₃)₂P]₂Pt(CN)(CNO) v_{CN} 2136 cm⁻¹, trans-[Ph(CH₃)₂P]₂Pt(CN)₂ v_{CN} 2127 cm⁻¹.

- 4) Versuche zur Stabilisierung von Isoknallsäure oder "Knallsäureäther" als Ligand am Platin
- a) Protonenkatalysierte Umlagerung $CNO \rightarrow NCO$: cis-Diisocyanatobis(triphenylphosphin)-platin(II) (2): 180 mg (0.2 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden in 10 ml absol. Chloroform gelöst und die Reaktion nach Zugabe von 3 Tropfen Eisessig IR-spektroskopisch verfolgt. Die Lage von v_{as}CNO des Fulminatokomplexes ändert sich im sauren Medium nicht. Im Verlauf von 12 h bei $30-40^{\circ}$ C verschwindet v_{as}CNO bei 2189 cm⁻¹ bei gleichzeitiger Zunahme von v_{as}NCO (2260 \rightarrow 2238 cm⁻¹). Das Reaktionsprodukt cis-(Ph₃P)₂Pt(NCO)₂ (2) wird durch Ausfällen mit Äther/Petroläther (1:1) isoliert. Ausb. 150 mg (90%).

Entsprechend wird aus 1 mit Triäthyloxonium-tetrafluoroborat in CHCl₃ die Isocyanatoverbindung isoliert. Überschüssiges [Ät₃O]BF₄ kann mit Wasser ausgewaschen werden.

b) Umlagerung CNO o NCO und Substitution von NCO^- gegen $F_3CCO_2^-$, Cl^- und PhS^- Reaktion mit Trifluoressigsäure: Bis(triphenylphosphin)bis(trifluoracetato)platin(II): 180 mg (0.2 mmol) trans- $(Ph_3P)_2Pt(CNO)_2 \cdot CHCl_3$ werden in 15 ml CHCl₃ mit 100 mg Trifluoressigsäure versetzt. Nach 15 h bei Raumtemp. wird mit Äther gefällt, und die farblosen Kristalle werden mit Äther und Petroläther gewaschen. Ausb. 100 mg (50%).

(Ph₃P)₂Pt(O₂CCF₃)₂ (945.7) Ber. C 50.80 H 3.20 Gef. C 49.96 H 3.37

Reaktion mit Chlorwasserstoff: cis-Dichlorobis(triphenylphosphin)platin(II): In die farblose Lösung von 100 mg (0.1 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ in 5 ml Chloroform wird bei Raumtemp. ein rascher Strom von trockenem HCl eingeleitet; die Lösung färbt sich gelb. Nach 3 min wird das Lösungsmittel i. Vak. abgezogen. Aus CHCl₃/Petroläther farblose Kristalle von cis-(Ph₃P)₂PtCl₂. Ausb. 50 mg (60%). — IR (KBr): vPt—Cl 300, 320 cm⁻¹.

Reaktion mit Thiophenol: trans-Dithiophenolatobis(triphenylphosphin)platin(II): 100 mg (0.1 mmol) trans-(Ph₃P)₂Pt(CNO)₂·CHCl₃ werden in 5 ml Chloroform mit 250 mg (2 mmol) Thiophenol (frisch dest.) unter N₂ 1 h unter Rückfluß gekocht. Die gelbe Lösung wird i. Vak. bis zur Trockene eingeengt. Nach Umkristallisieren aus triphenylphosphinhaltigem Chloroform/Petroläther schöne honiggelbe Kristalle. Ausb. 70-80 mg (70-80%).

(Ph₃P)₂Pt(SPh)₂ (938.0) Ber. C 61.46 H 4.30 P 6.60 S 6.84 Gef. C 61.28 H 4.48 P 6.62 S 6.62

- 5) Reaktion von trans- $(Ph_3P)_2Pt(CNO)_2$ (1) mit Tetraphenylarsoniumcyanid zu Tetraphenylarsoniumfulminat: Eine Lösung von 450 mg (0.5 mmol) 1 in 40 ml absol. säurefreiem (!) Chloroform wird mit 200 mg (0.5 mmol) reinem Tetraphenylarsoniumcyanid unter Lichtausschluß 10 Tage bei Raumtemp. umgesetzt. Anschließend wird das Lösungsmittel abrotiert und der Rückstand mit Wasser gewaschen. Die vereinigten Waschlösungen werden bei Raumtemp. i. Vak. eingedampft. Der Rückstand wird aus Chloroform/Äther, Petroläther umkristallisiert. Farblose Nadeln, die sich mit der Zeit beige färben. Ausb. 80-100 mg (40-50%). -1R (CHCl₃): v_{as} CNO 2022 cm⁻¹.
- 6) Darstellung von Fulminatokomplexen trans- $L_2M(CNO)X(X=CNO,NCO,CN,H,CH_3,CO)$ durch Metathesis mit Tetraphenylarsoniumfulminat (siehe Tab. 1): Zur konzentrierten Lösung des entsprechenden Chlorokomplexes in Chloroform wird die stöchiometrische Menge Tetraphenylarsoniumfulminat im gleichen Solvens getropft. Bei kleinen Ansätzen

(0.1 mmol) kann das Arsoniumfulminat in einer Portion zugegeben werden. Das Lösungsmittel wird i. Vak. entfernt und der kristalline Rückstand zur Entfernung des gebildeten Tetraphenylarsoniumchlorids mehrmals mit dest. Wasser gewaschen. Das getrocknete Rohprodukt wird aus Chloroform/Petroläther umkristallisiert. Die Verbindungen können durch längeres Trocknen i. Hochvak. bei 80–100°C frei von Lösungsmittel erhalten werden. Zur Aufnahme von IR-Spektren in Lösung eignet sich besonders Chloroform wegen seiner guten Durchlässigkeit in den Bereichen vas CNO (2400–2100 cm⁻¹), vs CNO (1200 bis 1100 cm⁻¹) und 8CNO (500–400 cm⁻¹). Ausb. 80–90%. Analysenwerte siehe Tab. 2; die übrigen Verbindungen wurden IR-spektroskopisch identifiziert.

Tab. 2. Analysenwerte einiger Fulminatokomplexe

		Analyse			
		C	H	N	MolMasse
$(n-BuPh_2P)_2Pt(CNO)_2$	Ber. Gef.	53.47 52.30	5.02 4.97	3.67 3.81	763.0
$(n-Bu_2PhP)_2Pt(CNO)_2$	Ber. Gef.	49.79 49.71	6.41 6.37	3.87 3.98	723.7
$(n-Bu_3P)_2Pt(CNO)_2$	Вег. Gef.	45.67 45.33	7.96 7.92	4.10 4.96	683.8
(Ph ₃ Sb) ₂ Pt(CNO) ₂	Ber. Gef.	46.33 46.16	3.04 3.20	2.84 2.88	985.3
(Ph ₃ As) ₂ Pd(CNO) ₂	Ber. Gef.	56.93 56.61	3.77 3.95	3.50 3.53	801.7
(Ph ₃ P) ₂ Rh(CO)CNO	Ber. Gef.	65.43 64.82	4.34 4.16	2.01 1.99	697.5

[496/73]